Serverless Data Lakehouse for Personalized Content Recommendation at Scale

Executive Summary

With the exponential growth of digital content, delivering personalized recommendations at
scale is a critical differentiator for businesses. Traditional recommendation architectures face
challenges with scalability, infrastructure management, and cost-efficiency. A serverless data
lakehouse approach offers a modern solution: combining the flexibility of a data lake with
the performance and structure of a data warehouse—while eliminating the burden of
managing infrastructure.

This white paper explores how organizations can leverage a serverless data lakehouse to
build a personalized content recommendation engine that is scalable, cost-effective, and
easy to maintain.

Why a Serverless Data Lakehouse?
Challenges with Traditional Architectures

1. High Operational Overhead — Traditional big data architectures require extensive
DevOps and infrastructure management.

2. Data Silos — Separation between data lakes (raw data) and data warehouses (curated
data) leads to slow processing and poor agility.

3. Scalability Issues — Recommendation workloads fluctuate; static clusters often result
in over-provisioning or performance bottlenecks.

Benefits of Serverless
1. Automatic Scaling — Compute resources scale up or down based on workload.
2. Pay-Per-Use — Costs align directly with usage.

3. No Infrastructure Management — Teams focus on data pipelines and ML models, not
server upkeep.

4. Unified Data Model — The data lakehouse supports both raw and structured data in
one place.

System Architecture Overview
Key components:

o Data Sources — Application logs, clickstreams, content metadata, and user profiles.

o Data Ingestion — Streaming and batch pipelines using serverless tools like AWS
Lambda, Google Cloud Functions, or Azure Functions.

o Data Lakehouse — Unified storage layer (e.g., Delta Lake, Apache Iceberg, or AWS
Lake Formation).

e ML Feature Store — Curated features for recommendation algorithms.

¢ Model Training and Inference — Serverless ML (e.g., AWS SageMaker Serverless,
Vertex Al).

e« Recommendation Service — Exposed via APIs for real-time personalization.

Diagram 1: High-Level Architecture

(11
age ML Feature
mmm Store

I
ickstream
E——
b) C@O
Content |[— I atta_ Application
Netadata [IGCSEION Inference
e Endpoint :
— Data Lakehouse :
ser Profiles g
- E
______________ Inference
Endpoint]
Description:

o Left: Data sources (clickstream, metadata, profile).

¢ Middle: Serverless ETL functions writing to a data lakehouse.

e Top: ML Feature Store connected to ML Training (serverless).

¢ Right: Inference endpoint serving recommendations to the application.

e Arrows indicating bidirectional feedback loops.

Data Flow & Workflow

1. Ingestion Layer
Serverless functions capture streaming data (user clicks, views, likes) in near real-
time and write them to object storage.

o Example: AWS Lambda - Amazon S3 - AWS Glue Catalog

2. Data Processing & Transformation
Data is processed using serverless frameworks like Apache Spark on serverless
clusters or SQL engines like Amazon Athena/Google BigQuery.

o Raw - Cleaned - Feature tables
3. Model Training

o Use collaborative filtering and deep learning models (e.g., neural matrix
factorization).

o Training jobs run in a serverless ML environment.
4. Model Deployment & Serving
o Serverless inference endpoints scale automatically based on traffic.

o Predictions cached for low-latency responses.

Diagram 2: Data Workflow

"
Ingest Prepare
Raw Data Data
N

\4

l

— N
sEm | Prepare
=== Data

N

A\ 4

. (__\
Load into Feature
Feature Store Engineering
S

A flowchart showing:

Description:

e Input: user activity >

e Serverless ingestion ->

Data lakehouse -
Feature store & training >
Inference APl >

User-facing app

Technologies & Tools

Storage: Amazon S3, Google Cloud Storage, Azure Data Lake
Compute: AWS Lambda, Google Cloud Functions, Azure Functions
ETL/Processing: AWS Glue, Databricks Serverless, BigQuery
Model Training: AWS SageMaker Serverless, Vertex Al

Serving Layer: AWS API Gateway, Cloud Run, Azure Functions

Data Governance: Lake Formation, Unity Catalog

Benefits of This Approach

1.

2.

Scalability: Automatically handles traffic spikes, e.g., during trending content.

Faster Experimentation: Quickly retrain models on fresh data without provisioning
infrastructure.

Cost Savings: Pay only for resources used.
Simplified Management: Less DevOps burden.

Unified Data: One platform for raw, structured, and machine learning data.

Diagram 3: Cost & Performance Comparison

Cost & Performance Comparison

@
Q
c
©
E
i)
o
o
Cost

Serverless Traditional

Data Data
Lakehouse Lakehouse
Description:

Bar chart comparing costs and latency between:
o Traditional big data stack

e Serverless data lakehouse

Use Case Example: Streaming Platform

A streaming platform with millions of active users adopted a serverless data lakehouse:
e Reduced infrastructure costs by 45%.
¢ Improved recommendation model freshness from daily to hourly updates.

e Achieved sub-50ms latency for API calls during peak load.

Conclusion

A serverless data lakehouse architecture enables organizations to deliver personalized
content recommendations at scale without compromising agility, performance, or cost. By
integrating serverless compute, unified storage, and machine learning pipelines, enterprises
can modernize their recommendation engines and deliver better user experiences.

