
Serverless Data Lakehouse for Personalized Content Recommendation at Scale 

 

Executive Summary 

With the exponential growth of digital content, delivering personalized recommendations at 

scale is a critical differentiator for businesses. Traditional recommendation architectures face 

challenges with scalability, infrastructure management, and cost-efficiency. A serverless data 

lakehouse approach offers a modern solution: combining the flexibility of a data lake with 

the performance and structure of a data warehouse—while eliminating the burden of 

managing infrastructure. 

This white paper explores how organizations can leverage a serverless data lakehouse to 

build a personalized content recommendation engine that is scalable, cost-effective, and 

easy to maintain. 

 

Why a Serverless Data Lakehouse? 

Challenges with Traditional Architectures 

1. High Operational Overhead – Traditional big data architectures require extensive 

DevOps and infrastructure management. 

2. Data Silos – Separation between data lakes (raw data) and data warehouses (curated 

data) leads to slow processing and poor agility. 

3. Scalability Issues – Recommendation workloads fluctuate; static clusters often result 

in over-provisioning or performance bottlenecks. 

Benefits of Serverless 

1. Automatic Scaling – Compute resources scale up or down based on workload. 

2. Pay-Per-Use – Costs align directly with usage. 

3. No Infrastructure Management – Teams focus on data pipelines and ML models, not 

server upkeep. 

4. Unified Data Model – The data lakehouse supports both raw and structured data in 

one place. 

 

System Architecture Overview 

Key components: 

• Data Sources – Application logs, clickstreams, content metadata, and user profiles. 



• Data Ingestion – Streaming and batch pipelines using serverless tools like AWS 

Lambda, Google Cloud Functions, or Azure Functions. 

• Data Lakehouse – Unified storage layer (e.g., Delta Lake, Apache Iceberg, or AWS 

Lake Formation). 

• ML Feature Store – Curated features for recommendation algorithms. 

• Model Training and Inference – Serverless ML (e.g., AWS SageMaker Serverless, 

Vertex AI). 

• Recommendation Service – Exposed via APIs for real-time personalization. 

 

Diagram 1: High-Level Architecture 

 
Description: 

• Left: Data sources (clickstream, metadata, profile). 

• Middle: Serverless ETL functions writing to a data lakehouse. 

• Top: ML Feature Store connected to ML Training (serverless). 

• Right: Inference endpoint serving recommendations to the application. 

• Arrows indicating bidirectional feedback loops. 

 



Data Flow & Workflow 

1. Ingestion Layer 

Serverless functions capture streaming data (user clicks, views, likes) in near real-

time and write them to object storage. 

o Example: AWS Lambda → Amazon S3 → AWS Glue Catalog 

2. Data Processing & Transformation 

Data is processed using serverless frameworks like Apache Spark on serverless 

clusters or SQL engines like Amazon Athena/Google BigQuery. 

o Raw → Cleaned → Feature tables 

3. Model Training 

o Use collaborative filtering and deep learning models (e.g., neural matrix 

factorization). 

o Training jobs run in a serverless ML environment. 

4. Model Deployment & Serving 

o Serverless inference endpoints scale automatically based on traffic. 

o Predictions cached for low-latency responses. 

 

Diagram 2: Data Workflow 

 
Description: 

A flowchart showing: 

• Input: user activity → 

• Serverless ingestion → 



• Data lakehouse → 

• Feature store & training → 

• Inference API → 

• User-facing app 

 

Technologies & Tools 

• Storage: Amazon S3, Google Cloud Storage, Azure Data Lake 

• Compute: AWS Lambda, Google Cloud Functions, Azure Functions 

• ETL/Processing: AWS Glue, Databricks Serverless, BigQuery 

• Model Training: AWS SageMaker Serverless, Vertex AI 

• Serving Layer: AWS API Gateway, Cloud Run, Azure Functions 

• Data Governance: Lake Formation, Unity Catalog 

 

Benefits of This Approach 

1. Scalability: Automatically handles traffic spikes, e.g., during trending content. 

2. Faster Experimentation: Quickly retrain models on fresh data without provisioning 

infrastructure. 

3. Cost Savings: Pay only for resources used. 

4. Simplified Management: Less DevOps burden. 

5. Unified Data: One platform for raw, structured, and machine learning data. 

 

 

 

 

 

 

 

 



 

Diagram 3: Cost & Performance Comparison 

 
Description: 

Bar chart comparing costs and latency between: 

• Traditional big data stack 

• Serverless data lakehouse 

 

Use Case Example: Streaming Platform 

A streaming platform with millions of active users adopted a serverless data lakehouse: 

• Reduced infrastructure costs by 45%. 

• Improved recommendation model freshness from daily to hourly updates. 

• Achieved sub-50ms latency for API calls during peak load. 

 

Conclusion 

A serverless data lakehouse architecture enables organizations to deliver personalized 

content recommendations at scale without compromising agility, performance, or cost. By 

integrating serverless compute, unified storage, and machine learning pipelines, enterprises 

can modernize their recommendation engines and deliver better user experiences. 


